6th Grade Math Distance Learning Packet
Week 4

Directions:

Daily Directions

Read directions for the topic and work through the examples.

Students should complete approximately 20-30 problems.

Contact Information:

Teacher Contact Information

School Contact Information
Chapter 7
Exponents and Arithmetic Properties

Standard(s) covered: 6.EE.A.1, LEAP.II.6.1, LEAP.II.6.7

7.1 Understanding Exponents (DOK 1)

Sometimes it is necessary to multiply a number by itself one or more times. For example, a math problem may require multiplying \(3 \times 3\) or \(5 \times 5 \times 5 \times 5\). In these situations, mathematicians have come up with a shorter way of writing out this kind of multiplication. Instead of writing \(3 \times 3\), you can write \(3^2\), or instead of writing \(5 \times 5 \times 5 \times 5\), write \(5^4\) to represent this problem. The first number is the base. The small, raised number is called the exponent or power. The exponent tells how many times the base should be multiplied by itself.

Example 1: \(6^3\) This means multiply by 6 three times: \(6 \times 6 \times 6\)

Example 2: Negative numbers can be raised to exponents also.
An even exponent will give a positive answer: \((-2)^2 = (-2) \times (-2) = 4\)
An odd exponent will give a negative answer: \((-2)^3 = -2 \times -2 \times -2 = -8\)

You also need to know two special properties of exponents:

1. Any base number raised to the exponent of 1 equals the base number.
2. Any base number raised to the exponent of 0 equals 1.

Example 3: \(4^1 = 4\) \(10^1 = 10\) \(25^1 = 25\) \(4^0 = 1\) \(10^0 = 1\) \(25^0 = 1\)

Rewrite the following problems using exponents. (DOK 1)

Example 4: \(2 \times 2 \times 2 = 2^3\)

1. \(7 \times 7 \times 7 \times 7\)
2. \(10 \times 10\)
3. \(12 \times 12 \times 12\)
4. \(4 \times 4 \times 4 \times 4\)
5. \(9 \times 9 \times 9\)
6. \(25 \times 25\)
7. \(15 \times 15 \times 15\)
8. \(5 \times 5 \times 5 \times 5 \times 5\)
9. \(2 \times 2 \times 2 \times 2\)
10. \(14 \times 14\)
11. \(3 \times 3 \times 3 \times 3 \times 3\)
12. \(11 \times 11 \times 11\)
Use a calculator to figure what product each number with an exponent represents. (DOK 1)

Example 5: \[2^3 = 2 \times 2 \times 2 = 8\]

13. \((-8)^3\) 16. \(5^4\) 19. \((-10)^2\) 22. \(7^0\)
14. \(12^2\) 17. \(15^0\) 20. \(3^5\) 23. \(4^3\)
15. \(20^1\) 18. \(16^2\) 21. \(10^4\) 24. \(54^1\)

Express each of the following numbers as a base with an exponent. (Some of these may have multiple answers.) (DOK 1)

Example 6: \[4 = 2 \times 2 = 2^2\]

25. 9 28. 36 31. 1,000 34. 64
26. 16 29. 8 32. 125 35. 49
27. 27 30. 32 33. 81 36. 121

7.2 Evaluate Expressions with Exponents (DOK 2)

When solving an expression that includes an exponent, first find the exponential product. Then solve by following the mathematical signs in the problem.

Example 1: Solve: \(4^2 + 9\).

Step 1: Find the exponential product: \(4^2 = 4 \times 4 = 16\)

Step 2: Follow the rest of the math problem. In this case, add.
\[16 + 9 = 25\]

Answer: 25

Example 2: Solve: \(2 \times 3^3\).

Step 1: Find the exponential product: \(3^3 = 3 \times 3 \times 3 = 27\)

Step 2: Follow the rest of the math problem. In this case, multiply.
\[2 \times 27 = 54\]

Answer: 54
Chapter 7 Exponents and Arithmetic Properties

Simplify the expressions with exponents below. (DOK 2)

1. $15 - 2^2$
2. $6^2 + 13$
3. 8×5^2
4. $35 - 3^3$
5. $9^2 + 12$
6. $2^4 \div 4$
7. $5^3 - 38$
8. $18 + 3^2$
9. $4^3 \div 8$
10. $19 - 2^2$
11. $75 \div 5^2$
12. $10^2 + 114$
13. $8^2 \times 3$
14. $99 - 6^2$
15. $4^2 \times 7$
16. $17 - 3^2$
17. $7^2 - 27$
18. $11 + 5^3$
19. $12^2 \div 9$
20. $23 - 4^2$
21. $184 \div 2^2$
22. $6^2 + 40$
23. $11^2 - 38$
24. $2^5 + 12$

7.3 Basic Properties of Rational Numbers (DOK 2)

The Associative, Commutative, and Distributive properties and the Identity and Inverse properties of addition and multiplication are listed below by example as a quick refresher.

<table>
<thead>
<tr>
<th>Property</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Associative Property of Addition</td>
<td>$(a + b) + c = a + (b + c)$</td>
</tr>
<tr>
<td>2. Associative Property of Multiplication</td>
<td>$(a \times b) \times c = a \times (b \times c)$</td>
</tr>
<tr>
<td>3. Commutative Property of Addition</td>
<td>$a + b = b + a$</td>
</tr>
<tr>
<td>4. Commutative Property of Multiplication</td>
<td>$a \times b = b \times a$</td>
</tr>
<tr>
<td>5. Distributive Property</td>
<td>$a \times (b + c) = (a \times b) + (a \times c)$</td>
</tr>
<tr>
<td>6. Identity Property of Addition</td>
<td>$0 + a = a$</td>
</tr>
<tr>
<td>7. Identity Property of Multiplication</td>
<td>$1 \times a = a$</td>
</tr>
<tr>
<td>8. Inverse Property of Addition</td>
<td>$a + (\neg a) = 0$</td>
</tr>
<tr>
<td>9. Inverse Property of Multiplication</td>
<td>$a \times \frac{1}{a} = \frac{a}{a} = 1, \ a \neq 0$</td>
</tr>
</tbody>
</table>
Write the number of the property listed on the previous page that describes each of the following statements. (DOK 2)

1. \(3 + 9 = 9 + 3\)
 9. \(6 + (-6) = 0\)

2. \(5 + (7 + 12) = (5 + 7) + 12\)
 10. \(r \times z = z \times r\)

3. \(25(3 + 2) = (25)(3) + (25)(2)\)
 11. \(q + 0 = q\)

4. \((4 \times 5) \times 2 = 4 \times (5 \times 2)\)
 12. \(m(n + p) = mn + mp\)

5. \(1 \times 8 = 8\)
 13. \((x)(y \cdot z) = (x \cdot y)(z)\)

6. \(7 \left(\frac{1}{7}\right) = 1\)
 14. \(-t + t = 0\)

7. \(1p = p\)
 15. \(354 + 453 = 453 + 354\)

8. \(17 + 0 = 17\)
 16. \(6 + (7 + 8) = (6 + 7) + 8\)

7.4 Matching Expressions Using Properties (DOK 2)

Match the expressions in column A to the equivalent expression in column B. (DOK 2)

<table>
<thead>
<tr>
<th>Column A</th>
<th>Column B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (x + x + x + x =)</td>
<td>A. (28 - 4x)</td>
</tr>
<tr>
<td>2. (15x + 6y =)</td>
<td>B. (y)</td>
</tr>
<tr>
<td>3. (4(7 - x) =)</td>
<td>C. (6 \times 15)</td>
</tr>
<tr>
<td>4. (2x + 2x + 2x =)</td>
<td>D. (8)</td>
</tr>
<tr>
<td>5. (1 \times y =)</td>
<td>E. ((4 \times 8) + (4 \times 3))</td>
</tr>
<tr>
<td>6. (x \times \frac{1}{x} =)</td>
<td>F. (4x)</td>
</tr>
<tr>
<td>7. (15 \times 6 =)</td>
<td>G. (4(x + y))</td>
</tr>
<tr>
<td>8. (3 \times (4 + 8) =)</td>
<td>H. (9 \times (2 \times 5))</td>
</tr>
<tr>
<td>9. (0 + 8 =)</td>
<td>I. (6x)</td>
</tr>
<tr>
<td>10. (4x + 4y =)</td>
<td>J. (3(5x + 2y))</td>
</tr>
<tr>
<td>11. ((9 \times 2) \times 5 =)</td>
<td>K. (0)</td>
</tr>
<tr>
<td>12. (7 + (-7) =)</td>
<td>L. (6(3y + 2x))</td>
</tr>
<tr>
<td>13. (4 \times (8 + 3) =)</td>
<td>M. ((3 \times 4) + (3 \times 8))</td>
</tr>
<tr>
<td>14. (18y + 12x =)</td>
<td>N. (1)</td>
</tr>
</tbody>
</table>
Chapter 7 Exponents and Arithmetic Properties

7.5 Matching Equivalent Expressions

Example: Which of these expressions is equivalent to $4n + 6$?

A. $10n$ - no, you can’t add 6 and 4 because 4 is a factor of n but 6 is not a factor of n.

B. $4(n + \frac{6}{4})$ - yes, this expression is equal to $(4n) + 6$ by using the distributive principle,

C. $.5 (8n) + .5 (12)$ - yes, $0.5 \times 8n = 4n$ and $0.5 \times 12 = 6$ so the expression equals $4n + 6$.

1. Which expressions are equivalent to $2a + 7$?
 A. $2(a + 3) + 1$ B. $2a (7)$ C. $\frac{1}{2} (4a + 14)$

2. Which expressions are equivalent to $2x + 18$?
 A. $x + x + 6(3)$ B. $2(x \times 18)$ C. $2(x + 9)$

3. Which expressions are equivalent to $3x + 9$?
 A. $3(x + 9)$ B. $3(x + \frac{9}{3})$ C. $3(x + 3)$

4. Which expressions are equivalent to $4(x + 8) + 3$?
 A. $4x + 15$ B. $4x + 35$ C. $4x + 11$ D. $4(x + 9) - 1$

5. Which expressions are equivalent to $y + y + y + 6$?
 A. $3(y + 2)$ B. $3(y + \frac{2}{3})$ C. $3(y + \frac{6}{3})$

6. Which expressions are equivalent to $6y + 12$?
 A. $\frac{1}{2} (12y + 24)$ B. $6(y + 2)$ C. $y + 18$

7. Brittany sells produce she grows in her garden. She sells tomatoes for $1.00 each and bags of carrots for $3.00. Which expression could be used to model the cost of 6 tomatoes (t) and 3 bags of carrots (c)?
 A. $3(2t + c)$ B. $9 tc$ C. $3(2 + 3)$ D. $t + 3c$

8. Jeff sells tacos and burritos from a mobile kitchen. He sells 3 tacos for $4.00 and burritos for $4.50. Karen orders 2 burritos and 3 tacos. Which expression will model her order?
 A. $3(t + b) - b$ B. $2b + t$ C. $3t + 2b$ D. $4(3 + 0.50)$
7.6 Equivalent Expression Practice (DOK 2)

1. Which expressions are equivalent to $2(x + 8)$?
 A. $2x + 8$
 B. $2x + 16$
 C. $2x + 4 \times 2 \times 2$
 D. $3(x + 8) - (x + 8)$
 E. $3(x + 8) - (x - 8)$

2. Which expressions are equivalent to $4(x - 5)$?
 A. $4x - 20$
 B. $4x - 5$
 C. $(2x - 2) + (2x - 3)$
 D. $4x + 3 - 8$
 E. $4 + x - 5$

3. Which expressions represent the sum of 6 and x?
 A. $6x$
 B. $6 + x$
 C. $x + 6$
 D. $x + x + x + x + x + x$
 E. x^6

4. Which expressions represent the difference of x^3 and $2x$?
 A. $x^3 - 2x$
 B. $x \times x \times x - 2x$
 C. $3x - 2x$
 D. $x + x + x - x + x$
 E. $-2x + x^3$

5. Select each expression that is equivalent.
 A. $8x + 5$
 B. $8x + 20$
 C. $4x + 2 + 4x + 3$
 D. $3(3x + 5) - (x - 5)$
 E. $3(2x + 5) + (2x + 5)$

6. Which expressions are equivalent to $5(x - 4)$?
 A. $5x - 4$
 B. $5x - 20$
 C. $4x - 4 + x - 16$
 D. $5x - 1$
 E. $2(x + 1) + (3x - 7)$

7. Which expressions represent the difference of x^3 and $2x$?
 A. $2(x + \frac{1}{2})$
 B. $2(x + 1)$
 C. $2(x - 1)$
 D. $4(x + 1) - 3(x + 1)$
 E. $7x - 4x$

8. Which expressions represent the difference of x^3 and $2x$?
 A. $3(x + 6)$
 B. $x + x + x + 18$
 C. $4x + 24 - x + 6$
 D. $3(x - 6)$
 E. $3x + 18$

Copyright © American Book Company
Order of Strength of Operations

1st
Brackets
Parentheses
Braces

2nd
Operations as
Powers, Exponents, or Radicals

Square Root of Product
\[\sqrt[n]{\text{Product}} \]
Cube Root of Product
\[\sqrt[3]{\text{Product}} \]

3rd
Operations
Multiplication-Division
Division-Multiplication
Multiplication as Parentheses
Division as a Fraction
\[\frac{8}{2} \]

4th
Operations
Addition-Subtraction
Subtraction-Addition

Left to Right

Operations
Inside Grouping Symbols

Brackets
Parentheses
Braces

Left to Right
7.7 Order of Operations (DOK 2)

In long math problems with +, −, \(\times \), \(\div \), (), and exponents in them, you have to know what to do first. Without following the same rules, you could get different answers. See the Order of Strength of Operations page right before this one to see the steps you should follow.

<table>
<thead>
<tr>
<th>The Order of Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.) Grouping Symbols: (Parentheses), [Brackets], {Braces}, Absolute Value</td>
</tr>
<tr>
<td>2.) Exponents & Radicals: (x^2), (\sqrt{x})</td>
</tr>
<tr>
<td>3.) Multiplication or Division -> From Left to Right</td>
</tr>
<tr>
<td>4.) Addition or Subtraction -> From Left to Right</td>
</tr>
</tbody>
</table>

1st: Grouping Symbols

\[
3^2 + (4 - 1) \div 3 - 5 \cdot 3
\]

2nd: Exponents/Radicals

\[
9 + 3 + 3 - 5 \cdot 3
\]

3rd: Multiply OR Divide

(from left to right)

\[
9 + 1 - 15
\]

4th: Add OR Subtract

(from left to right)

\[
10 - 15
\]

-5

Simplify the following expressions. (DOK 2)

1. \(6 + 5 \times 4 - 3 = \)
2. \(7 + 10^2 \times 3 - 54 = \)
3. \(54 \div 6 - 2 \times 2 = \)
4. \(8(4 - 3) - 3^2 = \)
5. \(5(2 + 3) - 4^2 = \)
6. \(5(12 - 6) \times 2 = \)
7. \((3 + 7 - 5) \times 2 = \)
8. \(4 \times 3 \div 2 \times 8 = \)
9. \(3^3 \div 9(1 + 2) = \)
10. \(7 + 4(2 \times 6) - 1 = \)
11. \(60^0 - 1 + 10 \div 2 = \)
12. \((30 \div 3) \times 2 - 7 = \)
13. \(3^2 + (7 + 1) - 5 = \)
14. \(9^2 + 2 - 8 \times 4 = \)
15. \(2^2 + (4 - 1) \times 4 = \)
16. \(4 - (3 - 6) + 2 = \)
17. \(4^2(3 + 4) - 70 = \)
18. \(2 \times 4 - 3 \times 5 = \)
Chapter 9
Solving Equations and Inequalities

Standard(s) covered: 6.EE.B.5, 6.EEB.6, 6.EE.B.7, 6.EE.B.8,
LEAP.II.6.6, LEAP.II.6.8

9.1 Solving One-Step Equations with Addition and Subtraction (DOK 2)
You are now ready to begin solving the algebra equations you have been writing. You use what
you know, or “known amounts,” to help you figure out what you don’t know or “unknowns.”
You have solved many equations already. You are probably comfortable solving problems like
“5 + ? = 10” or “5 + ___ = 10.” Immediately you know the answer is 5. Algebra is no different;
only the blanks and symbols “?” are now represented by letters, called variables. The variables
(letters) simply stand for the “unknown amount,” just like the symbols “?” and blanks. Equations
that have variables with no exponents are called linear equations.

Example 1: \[4 = x - 1\] This is read “four equals x minus one.” This means “four equals
a number minus one.” 5 is a number that fits in place of x. That
makes this sentence true. This can be checked by replacing the
variable, x, with the answer, 5.

\[4 = 5 - 1\]

Some equations are not always solved by answers that come easily to mind. In those cases, the
object is to separate the “known amounts,” or constants (integers), from the “unknown amounts,”
or variables (letters). The “equal sign” (=) is used to separate the variables from the integers in
equations.

Example 2: \[x + 78 = 114\] The opposite of adding is subtracting. However, we
\[-78 \quad -78\]
\[x = 36\]

To check, replace x with 36 in the original problem.
\[x + 78 = 114\]
\[36 + 78 = 114\]
36 is the number, x, that makes this sentence true.

Example 3: \[k - 34 = 100\] In this equation, 34 is being subtracted from k.
\[k - 34 = 100\]
\[+34 = +34\]
\[k = 134\]

To separate k from -34, we must do the opposite of subtract.
Add 34 to each side of the equal sign to balance the
equation and isolate the variable.
Adding 34 to each side gives the final answer.
Chapter 9 Solving Equations and Inequalities

To check, replace \(k \) with 134.
\[
134 - 34 = 100
\]
134 is the number, \(k \). That makes this sentence true.

Solve the equations below. Then, replace the variable with the answer and check. Show your work. (DOK 2)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(p + 5 = 11)</td>
</tr>
<tr>
<td>2.</td>
<td>(k - 29 = 54)</td>
</tr>
<tr>
<td>3.</td>
<td>(46 + m = 100)</td>
</tr>
<tr>
<td>4.</td>
<td>(z + 19 = 32)</td>
</tr>
<tr>
<td>5.</td>
<td>(f + 5 = 16)</td>
</tr>
<tr>
<td>6.</td>
<td>(q - 17 = 25)</td>
</tr>
<tr>
<td>7.</td>
<td>(16 + r = 25)</td>
</tr>
<tr>
<td>8.</td>
<td>(w - 11 = 39)</td>
</tr>
<tr>
<td>9.</td>
<td>(a - 36 = 100)</td>
</tr>
<tr>
<td>10.</td>
<td>(23 + p = 36)</td>
</tr>
</tbody>
</table>

9.2 Solving One-Step Equations with Multiplication and Division (DOK 2)

Solving one-step equations with multiplication and division follow the same rules as solving linear equations with addition and subtraction; the opposite operation must be used to separate the variable (letter) from the other terms in the equation. In the last section, if addition was in the problem, subtraction was used, and vice versa. In this section, if multiplication is used in the problem, division must be used to solve the problem and vice versa. Whatever is done to one side of the equation MUST be done to the other side.

Example 1: Solve for \(x \): \(3x = 24 \)

\[
\begin{align*}
3x &= 24 & \text{This is our original equation.} \\
\frac{3x}{3} &= \frac{24}{3} & \text{Divide both sides by three to get the final answer.} \\
x &= 8
\end{align*}
\]

To check, replace the answer, 8, for \(x \) in the original problem. \(3(8) = 24 \). Eight is the number that makes this sentence true.
Example 2: Solve for k: $\frac{k}{8} = 10$

In this equation, $\frac{k}{8}$ shows division; so multiplication, or the opposite operation, must be done to solve the equation. Both sides must be multiplied by 8.

$8 \times \frac{k}{8} = 8(10)$

$k = 80$

To check, replace the answer, 80, for k in the original problem. $\frac{80}{8} = 10$

80 is the number that makes this sentence true.

Use multiplication and division to solve the equations below. Show your work. (DOK 2)

1. $9m = 81$
2. $3k = 27$
3. $\frac{y}{2} = 166$
4. $6t = 120$
5. $7m = 112$
6. $\frac{x}{5} = 11$
7. $\frac{q}{15} = 4$
8. $13m = 52$
9. $8a = 32$
10. $27b = 81$
11. $15x = 615$
12. $6x = 48$
13. $\frac{h}{60} = 2$
14. $\frac{b}{2} = 167$
15. $\frac{z}{15} = 3$
16. $3n = 36$
17. $4k = 64$
18. $48x = 96$
19. $\frac{w}{5} = 20$
20. $\frac{x}{3} = 15$

9.3 Solving Algebra Word Problems (DOK 2, 3)

One-Step Word Problems

Just like solving any word problem, the key is to READ CAREFULLY. Use the information given to solve what the question is asking.

Example: Mrs. Hill bought 3 pounds of apples. The price is $2.49 per pound. How much did Mrs. Hill pay for the 3 pounds of apples?

Step 1: Get the facts together: 3 pounds of apples that cost $2.49 per pound. Multiply $3 \times 2.49 = 7.47$

Answer: 7.47
Solve the one-step algebra problems. (DOK 2)

2. Megan bought 3 pairs of socks, each costing $2.13 including taxes. How much did Megan pay for the 3 pairs of socks?

3. A toy store ordered 6 cases of basketballs. Each case holds 8 basketballs. How many basketballs did the toy store order in all?

4. Joyce bought 3 packages of gum, each pack having 14 pieces in them. How many pieces of gum did Joyce buy?

5. A grocery store ordered 9 cases of medium size cans of green beans. Each case holds 24 cans. How many cans of green beans did the grocery store order?

6. Twelve boys were divided into two teams of six boys each. Each boy made 12 snowballs for a distance throwing game. How many snowballs did all the boys make in all?

7. A family restaurant has 42 tables, and each table has 6 chairs around each table. How many chairs are around the 42 tables in all?

8. It takes 8,000 pounds of gravel for the base of each driveway in a new subdivision being built. If there are 63 homes in this new subdivision, how many pounds of gravel will be needed in all?
<table>
<thead>
<tr>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>6.</td>
<td>7.</td>
<td>8.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>14.</td>
<td>15.</td>
<td>16.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>18.</td>
<td>19.</td>
<td>20.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.1 Exponents and Arithmetic Properties workspace (Page 2)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
</tr>
</tbody>
</table>
7.2 Evaluate Expressions with Exponents

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2.</td>
<td>3.</td>
</tr>
<tr>
<td>4.</td>
<td>5.</td>
<td>6.</td>
</tr>
<tr>
<td>7.</td>
<td>8.</td>
<td>9.</td>
</tr>
<tr>
<td>10.</td>
<td>11.</td>
<td>12</td>
</tr>
</tbody>
</table>

Name: ____________________________

Homeroom: _______________
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16.</td>
<td>17.</td>
<td>18.</td>
</tr>
<tr>
<td>19.</td>
<td>20.</td>
<td>21.</td>
</tr>
<tr>
<td>22.</td>
<td>23.</td>
<td>24.</td>
</tr>
</tbody>
</table>
7.7 Order of Operations workspace

Name: _______________________________

Homeroom: ___________________

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2.</td>
<td>3.</td>
</tr>
<tr>
<td>4.</td>
<td>5.</td>
<td>6.</td>
</tr>
<tr>
<td>7.</td>
<td>8.</td>
<td>9.</td>
</tr>
<tr>
<td>10.</td>
<td>11.</td>
<td>12.</td>
</tr>
<tr>
<td>16.</td>
<td>17.</td>
<td>18.</td>
</tr>
</tbody>
</table>
9.1 Solving One-Step Equations with Addition and Subtraction

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
</tr>
<tr>
<td>5.</td>
<td>6.</td>
<td>7.</td>
<td>8.</td>
</tr>
<tr>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
</tr>
<tr>
<td>13.</td>
<td>14.</td>
<td>15.</td>
<td>16.</td>
</tr>
<tr>
<td>17.</td>
<td>18.</td>
<td>19.</td>
<td>20.</td>
</tr>
</tbody>
</table>

Name:_____________________________

Homeroom:_____________________

Note: The table represents exercises for solving one-step equations using addition and subtraction.

Instructions:

1. Fill in the blanks with the correct solutions for each equation.

Examples:

1. **Equation:**

 2. **Equation:**

Tips:

- When solving one-step equations, isolate the variable on one side of the equation.
- Use addition or subtraction to eliminate the constant term from one side.
- Ensure correctness by checking your solution in the original equation.
9.2 Solving One-Step Equations with Multiplication and Division

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
</tbody>
</table>

Name: ______________________________

Homeroom: __________________