4th Math STAAR Practice
Week 1

Focus:
• Whole Number and Decimal Operations

Directions:
• Complete each day’s work
• Show your work or justify your answer.
Week 1 Day 1
1. Diego made the array below.

The array represents the product of which two numbers?

A 12 and 7
B 13 and 8
C 13 and 6
D 13 and 7

2. Mrs. Cruz painted a mural in the library, the cafeteria, and the main hallway of Zia Elementary. If she was paid $2,480 to paint each mural, how much was she paid in all?

F $7,410
G $7,470
H $7,440
J $7,240

3. Every time Tristan goes to Mr. Lusk's store, he buys a comic book and a pretzel. He pays $7 for the comic book and $5 for the pretzel. If Tristan goes to Mr. Lusk's store 36 times this year, how much will he spend?

A $432, because 7 + 5 = 12 and 12 × 36 = 432
B $72, because 7 - 5 = 2 and 2 × 36 = 72
C $422, because 7 + 5 = 12 and 12 × 36 = 422
D $71, because 7 × 5 = 35 and 35 + 36 = 71

4. A regular pack of eggs contains 12 eggs. A large pack contains 18 and an extra-large pack contains 24. Martha uses the contents of 65 extra-large packs of eggs at her bakery each month. How many eggs does she use in all?

F 1,440
G 1,560
H 1,460
J 1,540

5. Molly is allowed to talk on her cell phone no more than 25 minutes each day. What is the maximum number of minutes she can talk on her cell phone in 30 days?

6. A large photo album has 136 pages and each page holds 8 photographs. A small photo album has 112 pages and each page holds 6 photographs. How many more photographs does a large photo album hold than a small photo album?

F 416
G 192
H 976
J 388

3. Look at the area model shown below.

The model represents which expression?

A 10 × 15
B 10 × 14
C 9 × 14
D 9 × 15

4. Look at the equation below.

7,224 × () = 50,568

What is the value of the hexagon?

F 6
G 8
H 9
J 7
Week 1 Day 2
1. Mount Everest, the tallest mountain in the world, is 29,029 feet tall. This is 8,793 feet taller than Mount McKinley, the tallest mountain in the United States. How tall is Mount McKinley?
 A 20,236 feet C 20,936 feet
 B 21,776 feet D 20,336 feet

2. Bernadette's car weighs 1.75 tons. Melanie's car weighs 2.5 tons. Which shows the combined weight of their cars?
 F 3.8 tons H 4.0 tons
 G 4.25 tons J 4.85 tons

3. If Demont's height increases by 1.75 inches over the next 12 months, he will be 58.0 inches tall. How tall is Demont right now?
 A 59.75 inches C 57.25 inches
 B 57.75 inches D 56.25 inches

4. Mr. Young is going to buy a new RV that costs $79,495 or a used RV that costs $25,599. Which shows the difference in price between the new and used RVs?
 F $54,104 H $53,896
 G $53,986 J $53,994

5. Kumani drank 4.8 fluid ounces of water after recess. Harriet drank 2.1 more fluid ounces of water than Kumani. Measured in fluid ounces, how much water did Kumani and Harriet drink combined?

1. The table shows the masses of four cats measured in kilograms.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat 1</td>
<td>3.25 kg</td>
</tr>
<tr>
<td>Cat 2</td>
<td>4.91 kg</td>
</tr>
<tr>
<td>Cat 3</td>
<td>4.69 kg</td>
</tr>
<tr>
<td>Cat 4</td>
<td>5.15 kg</td>
</tr>
</tbody>
</table>

What is the total mass of the four cats?
 A 17.84 kg C 18.0 kg
 B 18.1 kg D 18.05 kg

2. The population of Temple, Texas is 70,190. The population of Bryan, Texas is 78,709. Which shows the combined population of these two towns?
 F 148,799 H 147,899
 G 148,889 J 148,899

3. Alexander's paper airplane is 12.6 cm long. Heath's paper airplane is 2.25 cm shorter than Alexander's. In centimeters, how long is Heath's paper airplane?

4. Ms. Keller spent exactly $3,132 for two gold rings from the choices below.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring A</td>
<td>$1,574</td>
</tr>
<tr>
<td>Ring B</td>
<td>$1,108</td>
</tr>
<tr>
<td>Ring C</td>
<td>$1,456</td>
</tr>
<tr>
<td>Ring D</td>
<td>$1,558</td>
</tr>
</tbody>
</table>

Which two rings did she buy?
 F A and D H A and C
 G A and B J C and D
Week 1 Day 3
1. Ms. Charles opened 4 packages of crayons then divided all of the crayons equally among 3 students. If there were 6 crayons in each package, how many crayons did each student receive?
 A. 18, because $3 \times 4 = 12$ and $12 + 6 = 18$
 B. 14, because $3 \times 6 = 18$ and $18 - 4 = 14$
 C. 6, because $3 \times 6 = 18$ and $18 + 3 = 6$
 D. 8, because $4 \times 6 = 24$ and $24 + 3 = 8$

2. The table shows the type and number of items that 6 students placed in a recycling bin.

<table>
<thead>
<tr>
<th>Item</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheets of paper</td>
<td>42</td>
</tr>
<tr>
<td>Aluminum cans</td>
<td>12</td>
</tr>
<tr>
<td>Plastic bottles</td>
<td>6</td>
</tr>
</tbody>
</table>

If each student placed an equal number of items in the bin, how many items did each student place in the bin?

 F. 12 G. 8 H. 10 J. 6

3. Three boys played a game of basketball at recess.
 - Ricky scored 18 points.
 - Chen scored half as many points as Ricky.
 - Mateo scored 3 times as many points as Chen.

How many points did Mateo score?

 A. 27 B. 12 C. 24 D. 16

4. Keisha bought some packs of gum. There were 5 sticks of gum in each pack. She opened the packs then gave 8 sticks to her sister. This left Keisha with 27 sticks of gum. How many packs of gum did Keisha buy?

 F. 4 G. 7 H. 6 J. 8

5. Movie tickets cost $9 each for adults and $5 each for children. Which statement is true?
 A. 4 adults and 4 children will pay a total of $46 for tickets.
 B. 3 adults and 3 children will pay a total of $42 for tickets.
 C. 4 adults and 4 children will pay a total of $40 for tickets.
 D. 3 adults and 3 children will pay a total of $39 for tickets.

6. Mr. Martin bought some packages of drinking glasses at a store. There were 6 glasses in each package. When he arrived home he found that 4 glasses were broken and 20 glasses were not broken. How many packages of glasses did Mr. Martin buy at the store?

 F. 6 G. 3 H. 5 J. 4

7. Sarah planted 16 rows of carrot plants on Saturday afternoon. She planted 8 plants in each row. On Saturday night, feral pigs ate 26 of the plants. How many carrot plants were NOT eaten by feral pigs?

8. Luther will display his entire collection of model cars in acrylic cases. He has 98 cars and he will display no more than 4 cars in a case. What is the minimum number of cases he needs to display all of his cars?

 F. 25 G. 24 H. 30 J. 28
Week 1 Day 4
1. Flaco spent a total of $84 for 1 fishing rod and 4 fishing lures. Each fishing lure cost $3. Which equation can be used to find R, the cost of the fishing rod?
 - A $R = 84 - 1 - 4 - 3$
 - B $R = 84 - (4 \times 3)$
 - C $R = (84 + 4) - 3$
 - D $R = 84 - (4 + 3)$

2. Michelle played the piano for 2 hours 15 minutes yesterday. Which equation can be used to find m, the number of minutes Michelle played the piano?
 - F $m = (2 \times 15) + 60$
 - G $m = (2 \times 60) + 15$
 - H $m = 2 + 15$
 - J $m = (60 + 2) \times 15$

3. Richard has 24 gallons of water. He has 2 large buckets holding 10 gallons of water each. He has 1 small bucket holding the rest of the water. Which diagram best represents this situation where s is the number of gallons of water in the small bucket?
 - A
 24
 10 10 s
 - B
 s
 10 10 24
 - C
 24
 10 s
 - D
 s
 10 10 4

4. Each of the 10 boys and 14 girls in Tyler’s class read 2 novels last month. Which equation can be used to find n, the total number of novels the boys and girls read last month?
 - A $(10 + 14) + 2 = n$
 - B $(10 + 14) + 2 = n$
 - C $(10 + 14) - 2 = n$
 - D $(10 + 14) \times 2 = n$

2. Li-Wei made 36 bracelets out of red yarn and 24 bracelets out of green yarn. She divided all of the bracelets into 4 equal groups. Which equation can be used to find B, the number of bracelets in each group?
 - F $B = 36 + 24 + 4$
 - G $B = 36 - 14 - 4$
 - H $B = (36 + 24) + 4$
 - J $B = (36 - 24) + 4$

3. Caden, Ethan, and Rory want to run 100 laps around the track combined. So far Caden has run 27 laps, Ethan has run 31 laps, and Rory has run 17 laps. Which equation can be used to find L, the number of laps the 3 boys need to run to reach 100?
 - A $L = 17 + 27 + 31 + 100$
 - B $L = (27 + 31 + 17) + 3$
 - C $L = 100 - (27 + 31 + 17)$
 - D $L = (27 + 31 + 17) \times 3$

4. Sophia brings 6 carrots to lunch each day. She eats 4 of them and gives the rest to her friend. Which equation can be used to find c, the number of carrots Sophia gives to her friend after 5 days?
 - F $(6 + 4) + 5 = c$
 - H $(6 - 4) + 5 = c$
 - G $(6 \times 4) - 5 = c$
 - J $(6 - 4) \times 5 = c$
Week 1 Day 5
1. Look at the input-output table.

<table>
<thead>
<tr>
<th>Input, Position</th>
<th>Numerical Expression</th>
<th>Output, Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7×1</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>7×2</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>7×3</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>7×4</td>
<td>28</td>
</tr>
</tbody>
</table>

What would be the value of the number in the 12th position?

A 40 B 84 C 48 D 86

2. Look at the input-output table.

<table>
<thead>
<tr>
<th>Input, Position</th>
<th>Numerical Expression</th>
<th>Output, Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$69 + 1$</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>$69 + 2$</td>
<td>71</td>
</tr>
<tr>
<td>3</td>
<td>$69 + 3$</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>$69 + 4$</td>
<td>73</td>
</tr>
</tbody>
</table>

If the input in the table was 33, the output in the table would be which number?

F 102 G 106 H 103 J 92

3. Stella wrote a series of numerical expressions to generate a number pattern.

$75 - 1$, $75 - 2$, $75 - 3$. . .

Which table represents inputs and outputs that follow the same rule?

A

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>40</td>
<td>25</td>
</tr>
<tr>
<td>55</td>
<td>10</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Input, Position</th>
<th>Numerical Expression</th>
<th>Output, Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$112 - 1$</td>
<td>111</td>
</tr>
<tr>
<td>2</td>
<td>$112 - 2$</td>
<td>110</td>
</tr>
<tr>
<td>3</td>
<td>$112 - 3$</td>
<td>109</td>
</tr>
<tr>
<td>4</td>
<td>$112 - 4$</td>
<td>108</td>
</tr>
</tbody>
</table>

What would be the value of the number in the 50th position?

F 42 G 50 H 62 J 72

Enrique wrote a series of numerical expressions to generate a number pattern.

9×1, 9×2, 9×3 . . .

Which table represents inputs and outputs that follow the same rule?

A

<table>
<thead>
<tr>
<th>Input, Position</th>
<th>Numerical Expression</th>
<th>Output, Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>$6 + 6$</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>$12 + 6$</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>$18 + 6$</td>
<td>3</td>
</tr>
<tr>
<td>24</td>
<td>$24 + 6$</td>
<td>4</td>
</tr>
</tbody>
</table>

What would be the value of the number in the 72nd position?

A 12 B 14 C 10 D 18